IMHE OpenIR  > 山地表生过程与生态调控重点实验室
Alternative TitleVariations in Soil P Biogeochemistry and Its Impact Factors along an Altitudinal Gradient in the Yanzigou,Eastern Slope of the Gongga Mountain
周俊; 邴海健; 吴艳宏; 孙守琴; 罗辑
Corresponding Author吴艳宏
Source Publication山地学报
Other Abstract土壤磷生物地球化学特征受岩性、气候、土壤年龄、理化性质、地形、植物和微生物活动等因素的共同影响。山地植被和土壤垂直带谱为研究这些因素的相对重要性提供了理想试验场。选取未受人类破坏的贡嘎山燕子沟5个垂直植被带(裸地、高山灌丛带、暗针叶林带、针阔混交林带和阔叶林带,海拔分别为3 761 m、3 600 m、3 403 m、2 700 m和2 334 m),采集了40个土样,测定了土壤的基本理化性质,并采用连续提取法测定了土壤的生物有效磷、铝结合态磷、铁结合态磷、原生矿物磷、有机磷和残余态磷。结果表明,燕子沟土壤A层部分磷形态的空间分布呈现明显的垂直地带性特征。土壤A层的原生矿物磷随海拔的降低而显著降低,有机磷则呈现与原生矿物磷相反的变化趋势。而生物有效磷始终较低,次生矿物磷(铝和铁结合态磷)也较低,残余态磷的含量变化不大,始终是土壤总磷的最大组分。在高海拔地区原生矿物磷是总磷的第二大组分,而在低海拔地区,有机磷则成为总磷的第二大组分。植物是控制燕子沟土壤磷空间分布的相对重要因素,植物一方面通过控制土壤p H进而影响土壤原生矿物磷的含量,另一方面直接吸收生物有效磷,并将其转化为有机磷,导致有机磷随海拔降低而显著增加。此外,植物还通过"泵吸作用"导致总磷在土壤剖面上呈现由表层向底层降低的分布模式。次生矿物磷含量较低表明地球化学作用在影响燕子沟土壤磷生物有效性的作用相对较小。; Soil phosphorus (P) biogeochemistry is subfected to lithology,climate,topography,soil age and physicalchemical properties of soils,activities of plants and microbes. Mountains,with vertical belts of soils and vegetation due to large altitudinal differences,are ideal experimental areas to evaluate relative importances of these impact factors.In order to investigate spatial patterns of soil P biogeochemistry and impact factors, forty soil samples were collected at five different vegetation belts,which were bare area (3 761 m asl ( above sea level)),alpine shrub vegetation ( 3 600 m asl) ,dark coniferous forests (3 403 m asl),coniferous and broad leaved forests (2 700 m asl),and broad leaved forests (2 334 m asl).In addition to find out soil physical-chemical properties,soil P forms in A horizon were measured and separated into bioavailable P (Ex-P),Al bound P (Al-P),Fe bound P (Fe-P),Ca bound P (Ca-P),organic P (OP),and residual P (Res-P) by a sequential extraction technique.Our results showed that the spatial distributions of soil P forms revealed an obvious vertical zonation.The Ca-P concentrations in the A horizon decreased significantly with decreasing elevations.In contrast,OP concentrations in the A horizon increased significantly downslope.The concentrations of Ex-P,Fe-P and Al-P were always low across the five belts. Res-P concentrations changed rarely along slope gradient and accounted for the largest portion of total P except at the 3 761 m site.In the high altitude sites,the Ca-P was the second largest part of total P; while in the low altitudinal zones,OP became the second largest part of TP.The influences of vegetation on soil P spatial distributions are more important than those of geochemical processes.We confirmed,plants control soil pH and further impact Ca-P contents in soils. Plants transform inorganic P into OP by directly assimilating Ex-P,and thus cause a large increase of OP.In addition,the distribution pattern that total P concentrations in topsoil are higher than that in bottom is mainly a result of“pumping”of plants.The low contents of secondary mineral P (Fe-P and Al-P) indicates
that the effects of geochemical processes (e.g.absorption) on soil P bioavailability are relatively small.
Keyword生物有效磷 磷形态 生物地球化学 垂直地带性 燕子沟 贡嘎山
Subject AreaS153
Indexed ByCSCD ; 北大中文核心
Citation statistics
Cited Times:3[CSCD]   [CSCD Record]
Document Type期刊论文
First Author Affilication中国科学院水利部成都山地灾害与环境研究所
Recommended Citation
GB/T 7714
周俊,邴海健,吴艳宏,等. 贡嘎山燕子沟土壤磷海拔梯度特征及影响因素[J]. 山地学报,2016,34(4):385-392.
APA 周俊,邴海健,吴艳宏,孙守琴,&罗辑.(2016).贡嘎山燕子沟土壤磷海拔梯度特征及影响因素.山地学报,34(4),385-392.
MLA 周俊,et al."贡嘎山燕子沟土壤磷海拔梯度特征及影响因素".山地学报 34.4(2016):385-392.
Files in This Item:
File Name/Size DocType Version Access License
1-贡嘎山燕子沟土壤磷海拔梯度特征及影响(2505KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[周俊]'s Articles
[邴海健]'s Articles
[吴艳宏]'s Articles
Baidu academic
Similar articles in Baidu academic
[周俊]'s Articles
[邴海健]'s Articles
[吴艳宏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[周俊]'s Articles
[邴海健]'s Articles
[吴艳宏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 1-贡嘎山燕子沟土壤磷海拔梯度特征及影响因素_周俊.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.