IMHE OpenIR  > 数字山地与遥感应用中心
西南地区不同山地环境梯度叶面积指数遥感反演
Alternative TitleLeaf Area Index(LAI)Estimationfrom Remotely Sensed Observations in Different Topographic Gradients over Southwestern China
靳华安; 李爱农; 边金虎; 赵伟; 张正健; 南希
Corresponding Author李爱农
2016
Source Publication遥感技术与应用
ISSN1004-0323
Volume31Issue:1Pages:42-50
Other Abstract

摘要:叶面积指数(LAI)遥感估算是植被定量遥感研究的热点之一,监测植被LAI时空变化对于研究陆地生态系统碳循环及全球变化等具有非常重要的意义。在我国西南山区设置10个50 km* 50 km的观测样区作为研究区,其中包括5个森林生态系统样区、3个农田生态系统样区和2个草地生态系统样区。分别获取不同优势植被类型LAI地面实测数据,结合同期获取的遥感数据,考虑地形因素影响,基于偏最小二乘原理分别构建各样区LAI遥感估算模型,并采用交叉验证的方式对模型精度进行评价。结果表明:考虑了海拔、坡度和坡向等地形因子的森林LAI遥感反演模型与未考虑地形变量的模型相比,其验证精度有所提高,R~2由0.30~0.75提高至0.50~0.80, RMSE由0.52~0.93 m~2/m~2降低至0.48~0.89 m~2/m~2;所有样区优势植被类型LAI反演模型验证R~2在0.40~0.80之间,RMSE在0.22~0.89 m~2/m~2之间。发展的LAI遥感估算方法有助于认知山地植被LAI反演的地形效应问题,可为进一步的山地植被长势监测提供科学依据。

;

The leaf area index(LAI)estimation from remotely sensed data is one of hotspots in quantitative remote sensing of vegetation.Monitoring the spatial and temporal changes of LAI is very significant for carbon cycle of terrestrial ecosystem,global changes and other related studies.The paper selected ten 50 km!50 km sampling regions as our study area,including five forest regions,three crop regions and two grassland regions.The several parameters, such as leaf area index(LAI),canopy density,biomass,were measured in these regions.Taking leaf area index as a case,this study applied the partial least-squares regression method to build the estimation model of LAI combining remote sensing with in situ data and considering topographic effects for different vegetation types.Then,the crossvalidation approach was used to test model accuracy.The results indicated that the forest LAI inversion models taking topographic effects(altitude,aspect and slope)into accout is superior to those that topographic effects were not considered(R~2 increased from 0.30~0.75 to 0.50~0.80;RMSE decreased from 0.52~0.93 to 0.48~0.89 m~2/ m~2).For all vegetation types,the model validation R~2 and RMSE changed between 0.40~0.80,0.22~ 0.89 m~2/m~2,respectively.The method regarding LAI estimation from remotely sensed observations developed in this paper can help to understand topographic effects on LAI retrieval,and further provide scientific proof for monitoring vegetation growth status over mountain areas.

Keyword山地 遥感 叶面积指数(Lai) 反演
Subject AreaTp79
DOI:10.11873/j.issn.1004-0323.2016.1.0042
Indexed ByCSCD ; 北大中文核心
Language中文
CSCD IDCSCD:5664065
Funding Organization国家自然科学基金项目(41301385、41271433) ; 中国科学院战略性先导科技专项子课题(XDA05050105),中国科学院创新团队国际合作伙伴计划项目(KZZD-EW-TZ-06),中国科学院国际合作局对外合作重点项目
Citation statistics
Cited Times:7[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.imde.ac.cn/handle/131551/17723
Collection数字山地与遥感应用中心
Affiliation中国科学院、水利部成都山地灾害与环境研究所
First Author Affilication中国科学院水利部成都山地灾害与环境研究所
Recommended Citation
GB/T 7714
靳华安,李爱农,边金虎,等. 西南地区不同山地环境梯度叶面积指数遥感反演[J]. 遥感技术与应用,2016,31(1):42-50.
APA 靳华安,李爱农,边金虎,赵伟,张正健,&南希.(2016).西南地区不同山地环境梯度叶面积指数遥感反演.遥感技术与应用,31(1),42-50.
MLA 靳华安,et al."西南地区不同山地环境梯度叶面积指数遥感反演".遥感技术与应用 31.1(2016):42-50.
Files in This Item:
File Name/Size DocType Version Access License
西南地区不同山地环境梯度叶面积指数遥感反(540KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[靳华安]'s Articles
[李爱农]'s Articles
[边金虎]'s Articles
Baidu academic
Similar articles in Baidu academic
[靳华安]'s Articles
[李爱农]'s Articles
[边金虎]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[靳华安]'s Articles
[李爱农]'s Articles
[边金虎]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 西南地区不同山地环境梯度叶面积指数遥感反演_靳华安.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.