IMHE OpenIR  > 数字山地与遥感应用中心
Alternative TitleForest Types Mapping in Mountainous Area Using Multi-source and Multi-temporal Satellite Images and Decision Tree Models
雷光斌1,2; 李爱农1; 谭剑波1,2; 张正健1,2; 边金虎1,2; 靳华安1; 赵伟1; 曹小敏1,2
Corresponding Author李爱农
Source Publication遥感技术与应用
Abstract山地是森林重要的分布区,然而山地多样的森林类型、高度异质化的景观格局、突出的地形效应以及云、雾的干扰均不同程度地影响了山地森林类型的遥感自动制图。多源多时相遥感影像提供的季相节律信息是当前提高土地覆被遥感制图精度的重要信息源之一。以岷江上游地区为研究区,以国产环境减灾卫星多光谱CCD(简称HJ CCD)影像和美国Landsat TM影像为数据源,以决策树为分类方法,根据参与分类影像的时相差异设计了5组对比实验(生长季单时相组、非生长季单时相组、生长季多时相组、非生长季多时相组、全时相组),对比论证多源多时相遥感影像对山地森林类型自动制图的贡献和作用。对比结果表明:生长季和非生长季相结合的多时相遥感影像较单时相或单一类型(生长季或非生长季)多时相遥感影像,更能显著提高山地森林类型自动制图精度,且能降低分类决策树的复杂程度,更有利于山地森林类型的自动提取。
Other AbstractMountain is the major distribution areas of forest.However,the accuracy of forest types mapping in this region by remote sensing technology is affected by various factors directly or indirectly,such as heterogeneous landscape patterns,conspicuous topographic effects and frequent cloud containmination of satellite images.Temporal signature contained in the multi\|source and multi\|temporal satellite images is one of the important information to improve the accuracy of land cover product.A case study was conducted at the upper reaches of Minjiang River,and the native HJ CCD images and Landsat TM images were taken as main input data.Five controlled experiments with different satellite images (single growing season satellite images,single non\|growing season satellite images,multiple growing season satellite images,multiple non\|growing season satellite and all\|temporal satellite images) were designed to validate the contribution of multi\|source and multi\|temporal infomation for automatically mapping of forest types in moutainous area.Comparsion result shows that the multi\|temporal information combined with growing season and non\|growing season can significantly improve the mapping accuracy of forest types in mountainous area compared with single\|temporal or multi\|temporal images of single season,and can simplify the classification rule sets.  
Keyword山地森林制图 多源多时相影像 决策树模型 面向对象
Subject AreaTp751
Indexed ByCSCD ; 北大中文核心
Funding Organization国家自然科学基金项目(41271433,41571373),中国科学院战略性先导科技专项子课题(XDA05050105)和中国科学院“百人计划”项目联合资助。
Citation statistics
Cited Times:9[CSCD]   [CSCD Record]
Document Type期刊论文
First Author Affilication中国科学院水利部成都山地灾害与环境研究所
Recommended Citation
GB/T 7714
雷光斌,李爱农,谭剑波,等. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用,2016,31(1):31-41.
APA 雷光斌.,李爱农.,谭剑波.,张正健.,边金虎.,...&曹小敏.(2016).基于多源多时相遥感影像的山地森林分类决策树模型研究.遥感技术与应用,31(1),31-41.
MLA 雷光斌,et al."基于多源多时相遥感影像的山地森林分类决策树模型研究".遥感技术与应用 31.1(2016):31-41.
Files in This Item:
File Name/Size DocType Version Access License
基于多源多时相遥感影像的山地森林分类决策(998KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[雷光斌]'s Articles
[李爱农]'s Articles
[谭剑波]'s Articles
Baidu academic
Similar articles in Baidu academic
[雷光斌]'s Articles
[李爱农]'s Articles
[谭剑波]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[雷光斌]'s Articles
[李爱农]'s Articles
[谭剑波]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 基于多源多时相遥感影像的山地森林分类决策树模型研究_雷光斌.pdf
Format: Adobe PDF
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.