IMHE OpenIR  > 数字山地与遥感应用中心
多云雾地区高时空分辨率植被覆盖度构建方法研究
Alternative TitleResearch on Constructing Vegetation Fractional Coverage with Higher Spatial and Temporal Resolution in Cloudy and Foggy Region
陈阳1,2; 范建容3; 张云1; 李胜1,2; 甘泉1,2; 应国伟1,2; 曹伟超1,2
Corresponding Author范建容
2016-06
Source Publication遥感技术与应用
ISSN1004-0323
Volume31Issue:3Pages:518-529
Abstract

针对多云雾地区高时空分辨率数据缺乏现状,提出了一套区域尺度高时空分辨率植被覆盖度数据构建方法。首先,通过时空适应反射率融合模型(STARFM)有效地将TM的较高空间分辨率与MODIS的高时间分辨率融合在一起,构建了研究区植被生长峰值阶段的NDVI数据;然后,以植被生长峰值阶段的NDVI为输入,基于地表覆被类型,综合应用等密度和非密度亚像元模型对研究区的植被覆盖度进行估算。结果表明:①即使数据源存在大量的云雾,且存在一定的时相差异,研究区植被覆盖度的估算结果过渡自然,不存在明显的不接边效应;②以植被生长峰值阶段的NDVI数据为输入进行植被覆盖度估算,有效拉开了同一地表覆被类型不同覆盖度像元的NDVI梯度,提高了亚像元估算模型对输入数据的抗扰动性;③基于地表覆被类型,应用亚像元混合模型,能够提高植被覆盖度的估算精度。经野外实测数据验证,总体约85%的估算精度表明,针对高时空分辨率遥感数据缺乏的多云雾区域,本研究提出的方法能够实现区域尺度植被覆盖度数据的构建。

Other Abstract

Focusing on the cloudy and foggy region lacked of remote sensing data with highspatial and temporal resolution,a method of constructing vegetationfractional coveragewith high spatial and temporal resolution,on region scale has been proposed,in this paper.First,normalized difference vegetation index(NDVI) data with higher spatial andtemporal resolution was constructed by combining advantages both of TM and MODIS usingspatial and temporal adaptive reflectance fusion model(STARFM).Then,based on the land coverage typedata and NDVI data in the peak stage of vegetation growth,the vegetation fractional coverageof study area was estimated by density sub-pixel model andnon-density sub-pixel model.The result shows that:①Even the data sources with a lot of snow and cloud or shoot at different times,in the estimated vegetation fractional coverage image,the color of the area covered by cloud or it’s shade is consistent with the color of area uncontaminated;②The normalizeddifference vegetation index(NDVI)data,in the peak stage of vegetation growth,as input dataimproved the anti-disturbance to input data of sub-pixel mixed model estimates of vegetationcoverage by maximum the NDVI difference of same vegetation with differentvegetation fractional coverage;③Based on land coverage using sub-pixel model can improve the accuracy ofestimating vegetation fractional coverage.Validated by the data measured in the field,the accuracy of estimated vegetation fractional coverage isabout 85%,which suggest that it is viable to estimate vegetation fractional coverage in large regions,especially lacking of remote sensing data with high spatial and temporal resolution.

Keyword高时空分辨率 区域尺度 Starfm 亚像元模型 植被覆盖度
Subject AreaQ948 ; Tp79
DOI10.11873/j.issn.1004-0323.2016.3.0518
Indexed ByCSCD ; 北大中文核心
Language中文
CSCD IDCSCD:5745999
Funding Organization四川省测绘地理信息局科技支撑项目“基于解译知识库的面向对象信息提取技术在地里国(省)情地表覆盖解译中的应用研究”(J2013ZC03) ; 四川省测绘地理信息局科技支撑项目“地理国情监测支持下的山区公路沿线生态地质环境承载力研究”(J2014ZC03)
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imde.ac.cn/handle/131551/17941
Collection数字山地与遥感应用中心
Affiliation1.四川省地理国情监测工程技术研究中心
2.四川省第三测绘工程院
3.中国科学院水利部成都山地灾害与环境研究所
Recommended Citation
GB/T 7714
陈阳,范建容,张云,等. 多云雾地区高时空分辨率植被覆盖度构建方法研究[J]. 遥感技术与应用,2016,31(3):518-529.
APA 陈阳.,范建容.,张云.,李胜.,甘泉.,...&曹伟超.(2016).多云雾地区高时空分辨率植被覆盖度构建方法研究.遥感技术与应用,31(3),518-529.
MLA 陈阳,et al."多云雾地区高时空分辨率植被覆盖度构建方法研究".遥感技术与应用 31.3(2016):518-529.
Files in This Item:
File Name/Size DocType Version Access License
多云雾地区高时空分辨率植被覆盖度构建方法(1882KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[陈阳]'s Articles
[范建容]'s Articles
[张云]'s Articles
Baidu academic
Similar articles in Baidu academic
[陈阳]'s Articles
[范建容]'s Articles
[张云]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[陈阳]'s Articles
[范建容]'s Articles
[张云]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 多云雾地区高时空分辨率植被覆盖度构建方法研究_陈阳.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.