IMHE OpenIR
Retrieval of High Spatiotemporal Resolution Leaf Area Index with Gaussian Processes, Wireless Sensor Network, and Satellite Data Fusion
Yin, Gaofei1; Verger, Aleixandre2; Qu, Yonghua3; Zhao, Wei4; Xu, Baodong5; Zeng, Yelu6; Liu, Ke7; Li, Jing8; Liu, Qinhuo8
Corresponding AuthorYin, Gaofei(yingf@swjtu.edu.cn) ; Li, Jing(lijing01@radi.ac.cn)
2019-02-01
Source PublicationREMOTE SENSING
ISSN2072-4292
Volume11Issue:3Pages:18
AbstractMany applications, including crop growth and yield monitoring, require accurate long-term time series of leaf area index (LAI) at high spatiotemporal resolution with a quantification of the associated uncertainties. We propose an LAI retrieval approach based on a combination of the LAINet observation system, the Consistent Adjustment of the Climatology to Actual Observations (CACAO) method, and Gaussian process regression (GPR). First, the LAINet wireless sensor network provides temporally continuous field measurements of LAI. Then, the CACAO approach generates synchronous reflectance data at high spatiotemporal resolution (30-m and 8-day) from the fusion of multitemporal MODIS and high spatial resolution Landsat satellite imagery. Finally, the GPR machine learning regression algorithm retrieves the LAI maps and their associated uncertainties. A case study in a cropland site in China showed that the accuracy of LAI retrievals is 0.36 (12.7%) in terms of root mean square error and R-2 = 0.88 correlation with ground measurements as evaluated over the entire growing season. This paper demonstrates the potential of the joint use of newly developed software and hardware technologies in deriving concomitant LAI and uncertainty maps with high spatiotemporal resolution. It will contribute to precision agriculture, as well as to the retrieval and validation of LAI products.
Keywordleaf area index uncertainty Gaussian processes wireless sensor network data fusion Landsat MODIS validation
DOI10.3390/rs11030244
Indexed BySCI
WOS KeywordVEGETATION BIOPHYSICAL PARAMETERS ; CHLOROPHYLL CONTENT ; PRODUCT VALIDATION ; LAI PRODUCTS ; MODIS ; SENTINEL-2 ; SURFACE ; PERFORMANCE ; DERIVATION ; ALGORITHM
Language英语
Funding ProjectNational Natural Science Foundation of China[41601403] ; National Natural Science Foundation of China[41631180] ; National Natural Science Foundation of China[41531174] ; GF6 Project[30-Y20A03-9003-17/18] ; Youth Innovation Promotion Association CAS[2016333] ; China Postdoctoral Science Foundation[2018T110996] ; Innovation Ability Promotion Program of the Sichuan Provincial Department of Finance[2016QNJJ-023] ; EC Copernicus Global Land Service[CGLOPS-1] ; EC Copernicus Global Land Service[199494-JRC]
WOS Research AreaRemote Sensing
WOS SubjectRemote Sensing
WOS IDWOS:000459944400032
Funding OrganizationNational Natural Science Foundation of China ; GF6 Project ; Youth Innovation Promotion Association CAS ; China Postdoctoral Science Foundation ; Innovation Ability Promotion Program of the Sichuan Provincial Department of Finance ; EC Copernicus Global Land Service
PublisherMDPI
Citation statistics
Document Type期刊论文
Identifierhttp://ir.imde.ac.cn/handle/131551/25321
Collection中国科学院水利部成都山地灾害与环境研究所
Corresponding AuthorYin, Gaofei; Li, Jing
Affiliation1.Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Sichuan, Peoples R China
2.CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain
3.Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing Key Lab Remote Sensing Environm & Digital, Inst Remote Sensing Sci & Engn,Fac Geog Sci, Beijing 100875, Peoples R China
4.Chinese Acad Sci, Inst Mt Hazards & Environm, Res Ctr Digital Mt & Remote Sensing Applicat, Chengdu 610010, Sichuan, Peoples R China
5.Huazhong Agr Univ, Coll Resource & Environm, Macro Agr Res Inst, Wuhan 430070, Hubei, Peoples R China
6.Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
7.Sichuan Acad Agr Sci, Inst Remote Sensing Applicat, Chengdu 610066, Sichuan, Peoples R China
8.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Recommended Citation
GB/T 7714
Yin, Gaofei,Verger, Aleixandre,Qu, Yonghua,et al. Retrieval of High Spatiotemporal Resolution Leaf Area Index with Gaussian Processes, Wireless Sensor Network, and Satellite Data Fusion[J]. REMOTE SENSING,2019,11(3):18.
APA Yin, Gaofei.,Verger, Aleixandre.,Qu, Yonghua.,Zhao, Wei.,Xu, Baodong.,...&Liu, Qinhuo.(2019).Retrieval of High Spatiotemporal Resolution Leaf Area Index with Gaussian Processes, Wireless Sensor Network, and Satellite Data Fusion.REMOTE SENSING,11(3),18.
MLA Yin, Gaofei,et al."Retrieval of High Spatiotemporal Resolution Leaf Area Index with Gaussian Processes, Wireless Sensor Network, and Satellite Data Fusion".REMOTE SENSING 11.3(2019):18.
Files in This Item:
File Name/Size DocType Version Access License
Retrieval of High Sp(4655KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Yin, Gaofei]'s Articles
[Verger, Aleixandre]'s Articles
[Qu, Yonghua]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yin, Gaofei]'s Articles
[Verger, Aleixandre]'s Articles
[Qu, Yonghua]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yin, Gaofei]'s Articles
[Verger, Aleixandre]'s Articles
[Qu, Yonghua]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Retrieval of High Spatiotemporal Resolution Leaf Area Index with Gaussian Processes, Wireless Sensor Network, and Satellite Data Fusion .pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.